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A geometrically nonlinear theory of spatially curved beams is developed, 
The theory takes into account the rotational inertia, transverse shear defor- 

mations, changes in the form and dimensions of the cross sections, and add- 

itional loads which arise during the rotation of the cross sections as the beam 
is deformed, Variants of the hyperbolic equations are obtained and parabol- 
ic appm~matio~ constructed. The basic relations and equations of motion 

of the linear theory of curved beams were studied e, g. in [l - 51. Improve- 
ments in the accuracy of the results of the linear theory were obtained main- 

ly by taking into account the variability of the contour and the warping of 

the cross sections [3 -51 

1. F o I m u 1 a t i o n o f t h e p I o b 1 e m We consider a naturally twist- 
ed beam of variable cross section F (s), made of an elastic isotropic material with 
constant mechanical characteristics (F is the area of the cross section and d is the 
arc length of the axial line of the beam). The methods of supporting the end cross 
sections are assumed known, and the loading conditions given. 

Let US identlfl three points of the beam, P, P, and P*, where P, is the 
projection of P on the axial line of the beam and P* is the point to which P is 

translated in the course of deformation. The radius vectors r, f. and r* of the 
points P, PO and P* emerging from the stationary origin satisfy the relations 

r* = r + U, r = r. + qn + Lb, u = ujej (1.1) 

@I, +tes = t, n, b; I+, ua, q, E u, v, W) 

Here u and zbj denote the displacement vector of the point P and its components; 
t, n and b are the unit vectors of the tangent, normal and binormal to the axial 

line of the beam (t = dr, / ds); s, 7 and c are the corresponding coordinates of the 

point P. Repeated indices denote summation from one to three, 

Differentiating (1.1) and utilizing the Serret - Frenet formulas [6], we obtain 

dr* = dr f du 

ar = (ar ! 8s) ds + (ar / aq) dq + (C)r I 8C) $5 = 10 - 4) t - x5n i- 

(1.2) 
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g,, = g,, = - x6, g,s = g31 = X% g23 = g32 = 0 

gij (q = 0. 5 = 0) = Bij* giJ* = gif + 2Eij 
2eij ZZ eij + eji + %.ej8 - (1 + VI qj h 5) 

%j = (liej, - =j3) q + xej25 (i = 1, 2, 3) 

aal = alzt as1 = a13, a33 = a33 = a33 = a32 = 0 

Here etj are the distortion tensor components: gij and g+j* are the components 
of the metric tensor for the initial and deformed state of the beam; 8+j is the Kronec- 
ker delta; sij are the strain tensor components; k and X are the curvature and tors- 
ion of the axial line of the beam. From (1.2) it follows that the coordinate system 
chosen is triorthogonal only for the points lying on the axial line of the undeformed 
beam. 

Eirpanding the corresponding functions into power series in tl and 5, we obtain 

(uj, cijy &ij) = (@j,Pqr eij,rm %j,Pq) rlpCq Cl.41 

+,Pq = gu,Pq - kv,PqY ers,pQ = aw,pq t- Xv,pqels,pq = dv,pq + ka,pq - xw,Pq cl* 5, 

eaj,pcl = (P + 2) rqn+lqr eaj,pp. = (a + 11 rJj,pp.+r fi = 1, 2, 3) 
2e.. 13,P9 = W,nfr + ejipq + eis,ki%,P-kq--2 - (1 + Wf %j,pq 

alj,Pq = Rejl,P-1 q - wjs,P-I q) + mja,p q--1 

a21,pq = a12,Pq. a81,Pq = a13,Pqr a22,pq = a33,Pq = a23,Pq = a32,Pq = 0 

Here the indices p, q denote the summation from 0 to 00, and k, 1 from 0 to 
P and q , respectively. The indices preceeding the comma have the same mean- 

ing as in (1.21, Cl. 3). 
The Hooke’s Law for the triaxial stress-strain state, can be written in the following 

dimensionless 
sij* = V (Eij + fi,jBO) 

(&Jo = Oij / ET V = 1 / I2 (1 + p)Is B = CL / (1 - 2 ~1, 0 = 6s~) 

Here aij and aijO are the physical stresses and their dimensionless analogs, E and 

P are the Young’s modulus and the Poisson’s ratio. 
Assmn.tng (v, B) = (v, B),pqq~g? and using (1.51, we obtain 

ei? Lsi eij,pq Qplq I 

Gj,pq = 2 v,kl (eij,P-kq-l + b’B,r-ks-t@,P-rq-3) 

fk < r, r d P. I f s, s < sf 

For the beams with constant mechanical characteristics over the cross sections and 

along the axial line, we have 
0 

%, Pq 
= 2 V (Qj,Pq + bijBO,pq) (1.6) 

The internal forces and moments can be determined in dimensionless form as follows: 
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jk = Iw/(L’F) = i/& I,, = 
ss 

qP6qdF 

F (9 

ho* = 1, ill? = qo. io? = t (L = 1) 

Here N,‘, NYA” = Nzl“, N1sO = -VS~” denote the longitudinal and transverse forces; 

hf,,“, MB0 and Mao are the torsional and bending moments; J’, Ipq, ‘lo and I, 

denote the area, moments of inertia and the coordinates of the center of gravity of 

the cross section in the system (t, II, b); L, kpq and jpq are the length, flexibility 

and stability parameters of the beam. 
If the line connecting the centers of gravity of the cross sections is used as the 

axial line, then q. = 5, = 0. If in addition the principal axes of the cross section 

coincide with the axes n, b, then iI1 = 0. In this case jpq = 0, provided that at 

least one of the numbers p , q is odd. 
Next we consider the equations of motion of the beam, with help of the Hamilton 

- Ostrogradskii principle, which can be written in dimensionless form as follows: 

11 

s= (T-U)ds dt 1 (1.7) 

. l 

= ($&, klUt, p-k q_l )F (s) 

F (4 

F (4 

Here T and U are the dimensionless kinetic and potential energy at the cross section 

s, the linear quantities are related to the beam length L, the velocities to the spe- 

ed of sound c (cs = 2 v ! p, t = CT, / L; p is the material density and To the 

physical time). 

The functions minimizing the functional (1.7) must satisfy the IMer -0strogradskii 
equations, the latter represented in this case by the equations of motion of the beam. 

The number of equations is equal to the sum of all coefficients of the displacement 
series. The general form of these equations is as follows: 

a (aT j ar) ! at = a (au I ap) / as - au I a9 (1.8) 
r = acp 1 at, p = acp / as, ‘p = ui,pq 

and they must be supplemented by a specified number of initial and boundary condit- 
ions. 

Various variants of the theory of beams can be constructed with the help of the 
finite power series (1.4) only (p < p*, q < q*). The magnitude of the resulting err- 
ors in the determination of the functions sought obviously diminishes without bounds 

as p*t q*--,-L The variants of the equations given below are based on the corres- 

ponding power expansions in which the only terms retained are those containing 4 
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and c in powers not greater than the first. The second and fourth variant adopt, in 
addition, specified hypotheses concerning the transverse and shear stresses and deform- 
ations. 

2. Concrete VariaIIis of the theory of curved be- 
ams. V a r i a n t 1. In cotistmcting this variant we assume the stres++strain state 
of the beam to be triaxial. We retain in the expansions (1.4) and f 1. 6) only the 
terms satisfying the condition p + Q q 1. The component of the distortion and de- 
fOxnatiOn tensors and the expressions for the kinetic and potential energy same the 
form 

(Ui, efj, gfj> %j”) = (a..),0 + (--.I 111 + t-.),26 

ell,k = auk - k% e12,k = dVl, + kUk - ,tU?k 

e13,k = aw,$ f xVk (k = 0, 1, 2) 

eit,0 = Ui_lf ei2,o = Vj_lr P@O = W&l (i = 2, 3) 

eiisr = 0 (i = 2, 3; j = I, 2, 3; k = 1, 2) 

2 sij,O = eij,o + eij,o + eis,Oejs,o f4 i = 2, 2, 3) 

2 elj,b = 2 ejl,k = elj,k + ejl,r - (5 + 43 %j,k -I- %s,a%,k + 

e~s,kcjs,o ti = 1, 2, 3; k = I, 2) 

2 e&k = 0 (i, j = 2, 3; k = 1, 2) 

arj,l = “fjl,o - wjS,o9 %j,s = xeja,, (i = 1, 2, 3) 

T = F (4 (Vo2 + 2 rlov,v, + 2 L”V”V, + i202v12 t 2 il12V,V2 + 

iO22 V2? 

(2. 1) 

(2,2) 

rJ = F (s) (EUs + 2 qoE,,E, + 2 &I&E, -I- i20aE? -f- 2 i1~2E$G -t- i&%?~ 

P-pl,v, = ui,p’ui,*‘, E,E, = eij,pt+G + bijBe,pf!,, fp, q = 0, 1, 2) 

where the repeated dots in (2.1) denote the ~orr~ponding components from the brack- 
ets in the left-hand side. 

Calculating the derivatives of T and U with respect to the corresponding varia- 

bles we arrive, in accordance with (1.81, at the following system of equations: 

(2.3) 



Theory of elastic beams 409 

The above relations and equations of motion simplify considerably when the principal 
axes of the cross sections are aligned with n and b h I= 0) and the line connect- 

ing the centers of gravity of the cross sections ho E 50 s 0) is taken as the axial 
lineofthebeam. When ksx= 0, the corresponding linearized system of equations 

is identical, to within the notation used, to the eaations of [‘7]. In the present vari- 
ant the components of the displacement vector have a fully defined physical meaning: 

uo, %J and ~0 are the linear displacements in the t, n and b directions; u1 

and % denote the angular displacements about the d and n axes, respectively; 

cp = (WI - va) 12 is the angle of rotation of the cross section about the t -axis:the 
parameter f = (I.+ + vl) ! 2 characterizes the change in the area of the transverse 

cross section, and the coefficients qr = (wa - vl) I 2 and qr = (wl + aa) ! 2 des- 

cribe the change in the configuration of the cross section, When further terms are 
retained in the expansions (2. l), then a variant of the theory of beams taking into acc- 

ount the warping of the cross sections can be constructed. 

V a r i a n t 2. Here we consider two verstons of the theory of beams. The first 
version assumes that the stresses &‘, es0 and es30 = es0 are absent, The sec- 

ond version assumes that the deformations aal, as3 and aa3 = es, are absent. 
From k” = asso = 0 follows w, = - v,. Putting &” = ho = 0 we obtain 

%r” = a,,, alL = e,, = - pa,, , and from this we have wz = vr = - )A (bu, - 
ku,! . The beams in ctuestion have small transverse dimensions, therefore the expre- 

ssions for aza, essr ens = e,, given here and below retain only the terms linear in 
eiP 

For the components of the displacement vector we have 

18 = U, + u1q + u& v = v, - gq - cpf, w = W” f 9’1 - I#,:, 

cp = (WI - v,,) / 2, 9 = p (au, - ho) 

(2.4) 

and here the change in the form of the cross section is disregarded (ql = qB = 0). 
Putting a,, = 0, e,, = 0, a,, = es8 = 0 we obtain, respectively, v, = 0, w, = 0 
and q = - va* Then 
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u = %l + 4'1 + UaL v = vo - cpt, w = wg + qJq (2.51 

Here neither the changes in the form, nor in the area of the transverse cross section 
are taken into account (~1 = qa = 0, E = 0). The basic elasticity relationships and 
equations of motion are obtained from (2.4) or (2.5) as before, 

V a r i a n t 3. This variant of the theory is based on the following expansions: 

U=uo+urqf”n5, u=-=vo, w = wo (2.6) 

The equations of motion and the elasticity relationships can be obtained here either 
from the relations derived above (putting v1 = v2 = 0, wr = lu, = 0), or directly as in 
the variants 1 and 2 . III particular, for the case q0 = 5, = 0, jr1 = 0, F = const 

wehave 

UO " = &,, e* - kEls “*, 9 2;o” = iQ.,o* + ke,, o* - ml8 ,,* (2.7) 
wo ‘. = a&l3,o* + XE,2,0*r ul’. = a”ll,,* - kEIP,l* - h,,%,,,o* 

UP ” = i)~~~,~* - kq,,,* - b,,2~s,,0* 

.%I,% * = Ell,tio (1 + e&o) + %?,I,~~~I,~ $_ %3,koe31,0 + (I - 6ko)E11,00ell,k 

(k = 0, 1, 2) 

Here we have omitted the terms bjh and assumed that es2 = es3 = 0, ez3 = es2 = 

0; kri are the correction multipliers taking into account the character of the distri- 

bution of the tangential stresses ‘+J,o’= eil,OO over the beam cross section, The rot- 

ation of the cross sections about the t -axis and the variation in the form and area 

of the cross sections are also disregarded (cp = 0, Q = Q, = 0, E = 0). 
Variant 4. Assuming in (2, 6) and (2.7) UI s - (a% i- ku, - X%), + s 

- (awe + xv,), ur” z 0, uz” N 0, we arrive at the “classical” variant of the 

theory of beams. The physical meaning of the relationships given consists of the fact 

that in the present case we exclude from our considerations the deformations due to 
the transverse shears and the rotational inertia. The system of differential equations 

in the present case is a mixed system, unlike the previous hyperbolic equations. In 

particular, in the linear approximation the equations of motion assume the form 

uo 
*’ = & II,0 - ~izc9 (Q,, - till,0 + %,oJ 

(2.8) 

'* = jzo2a2 (ell,l -- kell,e -I- xe13,0) f kell,o - h?a (ell,3 - xpl3,o) 

;I3 z a2 1 a+ 

w 0 ** = iwd2a2 (e11,2 - xe12,,) + xi20aa (elltl - %I,O + %3,0) 

e 11,o = au0 - kvo, e12,0= aDo $ ku, - xwo 

e ,3,0 = JU’O + xv09 ell,l = --r?e12,0, e11,2 = --B+i,0 

where the first equation is hyperbolic while the second and third equations are parabol- 

ic. 

N 0 t e. It is possible, while dealing with particular problems, to disregard the 

longitudinal displacements (u. _ = 0) or to assume that the axial line of the beam is 

inextensible (au0 - koO E 0). 

3. Expansion of the displacement vector in the 
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stationary coordinate system. Wefind, insomeproblems of 
dynamics, that it is preferable to consider the motion of the beam not in the compon- 
ents of the system (Et), but in the components of the stationary rectangular coordin- 

ate system (xi, i = 1, 2, 3). We denote these components by vj,,, (j = 1, 2, 3; II = 
0, 1, 2, . . .). 

If the axial line of the beam is described by equation zi = Xi (s), then 

t = (aZi)ei, n = (&zi)er / k, li = ($%if3%i)‘~* 

b = {a [(@xi) / k] + kaxi}er / X, x = A / k* 

Here ei denote the unit vectors of the rectangular system, and the columns of the 
determinant A consist of the vectors ~01 {azi, a*xi, @z,}. 

The components of the ‘displacement vector vj,n can be written in terms of the 

components uj, 11 of the form of a matrix product C = AB. In particular, in case 

of the variant 1 the matrices have the following structure: 

A = II arj II, B = II b,j lit C = II crj II 
ai1 = aXi, ai, = (@xi) / k, ais = {a [(8*X,) / kl + kaxi} / X 

bi, = Ui,oy bi, = UI,, (i = 4 - i, i = 1, 2, 3), b38 = ~3,s 

bi, = Uk,z (k = 3 - i, i = 1, 2), Cij = ~j-l,i 

In conclusion,we note that the equations obtained include, as particular cases, 
the equations of dynamics of the plane curvilinear beams (X = 0) and of the recti- 

linear twisted beams (k = 0, x # 0) , as well as those without initial twist (k = x 

= 0; see e.g. [8] ). 
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